
Is the  norm always positive?

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2005 J. Phys. A: Math. Gen. 38 L249

(http://iopscience.iop.org/0305-4470/38/15/L02)

Download details:

IP Address: 171.66.16.66

The article was downloaded on 02/06/2010 at 20:08

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/38/15
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 38 (2005) L249–L255 doi:10.1088/0305-4470/38/15/L02

LETTER TO THE EDITOR

Is the CPT norm always positive?

Boris F Samsonov1 and Pinaki Roy2

1 Physics Department of Tomsk State University, 634050 Tomsk, Russia
2 Physics & Applied Mathematics Unit, Indian Statistical Institute, Kolkata-700 108, India

E-mail: samsonov@phys.tsu.ru and pinaki@isical.ac.in

Received 31 December 2004, in final form 4 March 2005
Published 30 March 2005
Online at stacks.iop.org/JPhysA/38/L249

Abstract
We give an explicit example of an exactly solvable PT -symmetric Hamiltonian
with unbroken PT symmetry which has one eigenfunction with zero PT norm.
The set of its eigenfunctions is not complete in the corresponding Hilbert space
and it is non-diagonalizable. In the case of a regular Sturm–Liouville problem
any diagonalizable PT -symmetric Hamiltonian with unbroken PT symmetry
has a complete set of positive CPT -normalizable eigenfunctions. For non-
diagonalizable Hamiltonians, a complete set of CPT -normalizable functions
is possible but the functions belonging to the root subspace corresponding to
multiple zeros of the characteristic determinant are no longer eigenfunctions
of the Hamiltonian.

PACS numbers: 03.65.−w, 11.30.−j

1. In recent years it has been shown that non-Hermitian Hamiltonians, in particular the PT -
symmetric ones, may have real eigenvalues [1]. This has given rise to the possibility of
constructing a complex extension of quantum mechanics [2]. Before the discovery of the C
operator [2], the main difficulty in constructing a self-consistent complex extension of quantum
mechanics was the presence of negative PT norms for some PT -symmetric Hamiltonians.
Using the CPT operation, a new norm was defined [2] and it was shown to be positive for
some models. In this letter, we would like to stress that this is true only if the PT norm is
non-zero. Here we shall consider an explicit example of an exactly solvable PT -symmetric
Hamiltonian, one of whose eigenfunctions has zero PT norm thus proving that such a situation
may occur in a PT -symmetric Hamiltonian. Further, using the fact that the PT operation
applied to an eigenfunction of the given Hamiltonian may only change its sign resulting in the
property that the CPT operation inverts the sign of a PT norm if it is negative, we conclude
that application of the CPT operation to an eigenfunction of a PT -symmetric Hamiltonian
is equivalent to first going to an eigenfunction of the adjoint operator and then taking the
complex conjugation provided the given solution is normalized properly. Subsequently we
show that for a regular Sturm–Liouville problem the zero CPT norms may appear only if the
characteristic determinant has multiple zeros. In this case the system of eigenfunctions is not
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complete in the corresponding Hilbert space, implying that the Hamiltonian related with such a
problem is non-diagonalizable. We show that both for diagonalizable and non-diagonalizable
Hamiltonians, one is able to define a Hilbert space with a positive CPT norm but in the latter
case the basis functions corresponding to a degenerate root subspace are not eigenfunctions
of the Hamiltonian.

2. In this part of our letter, we present an example of an exactly solvable PT -symmetric
Hamiltonian having one eigenfunction with the zero PT norm.

Let us consider the following Sturm–Liouville problem in the interval [−π, π]:(−∂2
x + V (x) − E

)
ψ = 0 (1)

with the zero boundary conditions

ψ(−π) = ψ(π) = 0. (2)

We would like to consider the following PT -symmetric potential

V (x) = − 6

(cos x + 2i sin x)2
. (3)

It is not difficult to check that for a given E = k2 ∈ C, equation (1) with the potential (3) has
the following solutions:

ψ1 = eikx

[
2i − ki +

3

2i + cot x

]
ψ2 = e−ikx

[
2i + ki +

3

2i + cot x

]
. (4)

For all k �= 1 they are linearly independent since their Wronskian is 2ik(k2 − 1). For k = 1
one can choose

ψ1 = 1

cos x + 2i sin x
ψ2 = 5 sin(2x) − 4i cos(2x) − 6x

cos x + 2i sin x
. (5)

The Wronskian of these functions is equal to 4.
It is evident that the zero boundary conditions may be satisfied if and only if � =

�(E) = 0 where

� =
∣∣∣∣a1 a2

b1 b2

∣∣∣∣ a1,2 = ψ1,2(−π) b1,2 = ψ1,2(π) (6)

is the characteristic determinant. From here for k �= 1 one yields

(k2 − 4) sin(2kπ) = 0. (7)

This corresponds to the purely real spectrum k = kn = n/2

En = n2/4 n = 1, 3, 4, 5, . . . . (8)

It may be pointed out that all roots of equation (7) are simple except for E = k2 = 4 which is a
double root and it will be shown that this result has important consequences. For k = 1,� �= 0
meaning that E = 1 (n = 2) is not a spectral point. We would like to note that the whole
spectrum is simple (i.e. there is only one eigenfunction for every eigenvalue) including the
point E = 4 and the existence of the double root of the equation �(E) = 0 is not related with
the (non-)degeneracy of the eigenvalue E = 4. This can be easily seen from (4). For instance
at k = 4 ψ1(±π) = 0 but ψ2(±π) �= 0.

The eigenfunctions are

ψn = [(16 − n2) cos x − 2i(n2 − 4) sin x] sin
[

n
2 (π + x)

] − 6n sin x cos
[

n
2 (π + x)

]
cos x + 2i sin x

.
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They are PT orthogonal (we recall that PT ψn(x) = ψ∗
n (−x)), and it is not difficult to find

their PT norm, so∫ π

−π

ψn(x)[PT ψm(x)] dx = π(−1)n+1(n2 − 4)(n2 − 16)δnm n �= 2. (9)

Thus we see that the PT norm of ψ4 is null. This means that if one defined the CPT -
inner product by redefining the PT -inner product in a way that the vectors with a negative
PT norm would become the vectors with a positive CPT norm (in our case it would be
‖ψn‖2

CPT = π(n2 − 4)(n2 − 16), n = 1, 4, 5, . . . and ‖ψ3‖2
CPT = 35π ), the vectors with the

zero PT norm (ψ4 in our example) would still remain as vectors with the zero CPT norm
and the metric of such a space would be neither negative nor positive. Another interesting
observation is PT ψn = (−1)n−1ψn, n = 1, 3, 4 . . ., but since the vector with n = 2 is
missing, the ± signs do not alternate for two adjacent points of the spectrum n = 1 and n = 3.

An important property of a spectral problem such as the one given in (1–3) is that the
set of eigenfunctions {ψn} is not complete in L2(−π, π). Nevertheless, it is remarkable that
one can find the missing functions and enlarge the set of eigenfunctions till a set complete in
L2(−π, π) and these missing functions are related just with the multiple roots of the equation
�(E) = 0. We shall now show that in our particular case the single missing function is related
not with the missing value of n = 2 but with the eigenfunction

ψ4 = −24 e2ix sin x

cos x + 2i sin x
(10)

corresponding to the double root of the equation �(E) = 0. To find this function we introduce
a special solution ψ(x, k), E = k2 of the spectral problem (1)–(2) such that ψ(−π, k) = 0
fixing the normalization by the condition ψ ′(−π, k) = 1. (By the prime, we denote the
derivative with respect to x.) It can easily be found with the help of the solutions (4) to see
that

ψ(π, k) = (k2 − 4) sin(2kπ)

k(k2 − 1)
(11)

and the equation ψ(π, k) = 0 has exactly the same roots as �(E) = 0 (see equation (7)). In
particular all roots are simple except for k = 2 which is a double root. (Note that ψ

(
x, n

2

)
may differ from ψn only by a constant factor.) For this reason its derivative with respect to
k, ψ̇(x, k) ≡ ∂ψ(x, k)/∂k, at k = 2

ψ̇(x, 2) = 1
12 [12iπ − 7 + 12ix + 8 e−2ix − e−4ix]ψ(x, 2) (12)

satisfies the zero boundary conditions, ψ̇(±π, 2) = 0 also. It is evidently linearly independent
with the function (10) and PT orthogonal with ψn, n = 1, 3, 5, 6, 7 . . . which may be checked
by the direct calculation meaning that it is linearly independent with the set of eigenfunctions
{ψn}. It follows from equation (1) that it satisfies the inhomogeneous equation[−∂2

x + V (x) − 4
]
ψ̇(x, 2) = 4ψ(x, 2). (13)

The function ψ̇(x, 2) is called associated function with the eigenfunction ψ(x, 2) (see e.g.
[4, 5]). It can be proven (see e.g. [5], theorem 1.3.1) that the set {ψn}, n = 1, 3, 4, 5 . . .

supplemented with ψ̇(x, 2) or equivalently with

ϕ4 = 12ix e2ix − e−2ix + 8

cos x + 2i sin x
sin x (14)

is complete in L2(−π, π). One can note that ψ4 and either ϕ4 or ψ̇(x, 2) form a basis in the
two-dimensional root subspace L4 corresponding to the energy E = 4 and they both satisfy
the homogeneous equation[−∂2

x + V (x) − 4
]2

ψ(x) = 0 ψ(−π) = ψ(π) = 0. (15)
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For ψ4 this follows from (1) and for ψ̇(x, 2) one should also take into account equation (13).
Let us introduce a short notation to the integral∫ π

−π

ψn(x)ψm(x) dx ≡ (ψn, ψm).

Then by the direct calculation one can find that (ϕ4, ϕ4) = −44π and (ϕ4, ψ4) = −96π . Now
in the root subspace L4 one can choose the basis we denote ξ2 and ξ3 such that (ξn, ξm) =
δnm, n,m = 2, 3,

ξ2 = iψ4

√
(ϕ4, ϕ4)/(ϕ4, ψ4) − iϕ4/

√
(ϕ4, ϕ4) ξ3 = ϕ4/

√
(ϕ4, ϕ4)

and renormalize all other basis functions

ξn = ψn/
√

π(n2 − 4)(n2 − 16) n = 1, 5, 6, 7, . . . ξ4 = ψ3/
√−35π.

So, the new basis {ξn} has the following properties:

PT ξn = (−1)n−1ξn (ξn, ξm) = δnm(−∂2
x + V (x) − En

)2
ξn = 0 ξn(±π) = 0

with En = n2/4 for n = 1, 5, 6, 7, . . . , E2 = E3 = 4 and E4 = 9/4 which readily follow
from the properties of the functions ψn and ϕ4.

Before ending this section we would like to point out that the zero PT norm of ψ4 is not
accidental but is due to the fact that the root k = 2 of the equation ψ(π, k) = 0 is a double
root. Indeed, since ψ(x, k) satisfies equation (1) one has

(k2 − k̃2)ψ(x, k)ψ(x, k̃) = d

dx
[ψ ′(x, k)ψ(x, k̃) − ψ(x, k)ψ ′(x, k̃)]

from which it follows that at k̃ = n/2∫ π

−π

ψ(x, k)ψ
(
x, n

2

)
dx = 1

n2

4 − k2
ψ ′(π, n

2

)
ψ(π, k). (16)

Noting that ψ ′(π, n
2

) = (−1)n �= 0 and taking into account (11) we conclude that for k = 2
(n = 4), (ψ4, ψ4) = 0, and for k �= 2, (ψn, ψn) �= 0, n = 1, 3, 5, 6, 7, . . .. This is a
property which does not depend on a particular choice of the potential V (x) and takes place
for any eigenfunction (if present) of the boundary value problem (1)–(2) with the simple
spectrum corresponding to a double root of the equation ψ(π, k) = 0. In particular, any such
eigenfunction of a PT -symmetric Hamiltonian corresponding to a regular Sturm–Liouville
problem has zero PT norm.

So, from this example we see that the set of eigenfunctions of the problem (1)–(3) is not
complete but may be completed. In the next section, we shall see that such a situation though
unacceptable from the quantum mechanical viewpoint is usual in the theory of ordinary linear
differential operators and our example presents an elementary illustration of known theorems
[4, 5]. This is related to the fact that in the usual quantum mechanics, one always deals with
diagonalizable Hamiltonians while in complex quantum mechanics this is not always so.

3. Here we first recall some facts from the theory of ordinary linear differential operators
[4, 5] and then show how a new (dynamical) inner product in the space L2(−π, π) can be
defined. Everywhere we shall assume that the spectrum of the boundary value problem of
type (1)–(2) is real as it is in our example.

I. A boundary value problem similar to that given by (1)–(2) with a complex-valued
function V (x) defines a non-selfadjoint operator H in the Hilbert space L2(−π, π) with
the dense domain of definition consisting of all twice differentiable functions vanishing at
x = ±π . The adjoint problem obtained from (1)–(2) by replacing V (x) with its complex
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conjugate V ∗(x) defines the operator H + which is Hermitian adjoint to H. Since H has a real
spectrum, H + has the same spectrum and the known bi-orthogonality condition between the
eigenfunctions of H,ψn(x), and those of H +, ψ̃n′(x) = ψ∗

n′(x), has the form

〈ψ̃n′ |ψn〉 ≡ (ψn′ , ψn) =
∫ π

−π

ψn′(x)ψn(x) dx = 0 n �= n′. (17)

By the angle brackets we denote the usual inner product in L2(−π, π) and the round brackets
define a new inner product to be defined later (see below).

II. The spectrum of H coincides with the zeros of the determinant �(E) given by (6)
or equivalently with the solutions of the equation ψ(π, k) = 0 where ψ(x, k) is a solution
vanishing at x = −π for all k. If H is Hermitian �(E) has only simple zeros. For complex
potentials the equation �(E) = 0 may have multiple zeros as in the example above. The
situation with multiple zeros is an extension to differential equations of the property known
in the linear algebra for a non-diagonalizable matrix which can nevertheless be reduced
to a canonical Jordanian form. Using this analogy one may call such Hamiltonians non-
diagonalizable. The set of their eigenfunctions is not complete in L2(−π, π) but may be
completed. Otherwise the Hamiltonian is called diagonalizable (cf [6]). For a diagonalizable
Hamiltonian (ψn, ψn) �= 0∀ n, the set {ψn} is complete in L2(−π, π) and they can always be
normalized such that

(ψn, ψn) =
∫ π

−π

ψ2
n(x) dx = 1. (18)

For the case when a continuous spectrum is present, the concept of diagonalizability should
be examined more carefully.

III. In conventional quantum mechanics the property that self-adjoint operators have a
complete set of eigenfunctions in the corresponding Hilbert space plays a crucial role. Now
we would like to discuss the role of this property in the case of non-selfadjoint operators. In
particular, the following theorem ([4], theorem 4, chapter II section 3) is extremely useful:

Theorem 1. Let operator H be generated by regular boundary conditions. Let all its
eigenvalues be simple zeros of the function �(E) defined in (6). Then any f (x) belonging
to the domain of definition of H can be developed over its eigenfunctions in the uniformly
convergent series

f (x) =
∞∑

n=1

anψn(x) (19)

an =
∫ π

−π

f (y)ψ̃∗
n(y) dy (20)

where ψn(x), ψ̃n(x) are eigenfunctions of H and H + corresponding to the eigenvalues En and
E∗

n respectively.

Remark. It is not explicitly stated in this theorem but the eigenfunctions are assumed to be
normalized to satisfy equation (18).

We refer the reader to the book [4] for the general definition of regular boundary conditions
of a boundary value problem for an nth order differential operator. For our purposes it is
sufficient to note that non-degenerate boundary conditions used by Marchenko [5] are regular.
They are specified as the conditions for which the characteristic function �(E) is not constant
for the zero potential V (x) = 0. Evidently the boundary conditions given in (2) satisfy
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this property. At first glance it would seem that this is exactly the result that one needs in
quantum mechanics. But for a self-adjoint Hamiltonian a stronger theorem is valid, namely,
the set of its eigenfunctions is complete in L2(−π, π). This means that for any element
from L2(−π, π) the corresponding Fourier series converges in the squared mean. A similar
statement takes place for complex Hamiltonians also but under some additional restriction
imposed on the boundary conditions. We will not go into further detail but refer the interested
reader to the book by Naimark [4]. We only note that the non-degenerate boundary conditions
by Marchenko and in particular conditions (2) have this property and the eigenfunctions of
the boundary value problem (1)–(2) form Riesz basis known also as a basis equivalent to an
orthonormal basis in which case a counterpart of the Parseval equality can be formulated for
any element from L2(−π, π). The completeness condition for the set of eigenfunctions of
H normalized according to (18) in the space L2(−π, π) has almost the usual form, only the
complex conjugation is absent

∞∑
n=1

ψn(x)ψn(y) = δ(x − y). (21)

Once the property that the system of eigenfunctions of H is complete in L2(−π, π) is
established, we can define a new Hilbert space as follows. First we define a new positive
definite sesquilinear functional over the linear hull (lineal) L of all finite linear combinations
of the solutions of the boundary value problem (1)–(2) and then close this space with respect
to the norm generated by this functional. For that we note that together with equation (1), we
have the adjoint boundary value problem defined by the differential equation (H + −E)ψ̃ = 0
with the boundary conditions (2). In general, the lineal L∗ of corresponding solutions of the
latter equation is different from L although they both are included in L2(−π, π). According
to the left-hand side of equation (17) just elements from L∗ participate in the biorthogonality
condition. Therefore, to be able to use this equation while defining the new inner product for
elements from L we have to map lineal L∗ onto L. We realize this mapping first between
the basis functions, ψn ↔ ψ̃n = ψ∗

n and then continue it by linearity to the whole spaces L∗

and L: ψn + ψm ↔ ψ̃n + ψ̃m = ψ∗
n + ψ∗

m, cψn ↔ cψ̃n = cψ∗
n . Once the correspondence

ψ ↔ ψ̃ , is established ∀ψ ∈ L,∀ψ̃ ∈ L∗, one can define in L a positive definite sesquilinear
functional, (·, ·), (the new inner product) as follows:

(ψ, ϕ) = 〈ψ̃ |ϕ〉 ψ, ϕ ∈ L ψ → ψ̃ ∈ L∗. (22)

It is evident that because of the bi-orthonormality conditions (17), (18) the basis ψn becomes
orthonormal with respect to the new inner product. Moreover, for any ψ of the form
ψ = ∑n

k=1 ckψk �= 0 the value (ψ,ψ) = ∑n
k=1 |ck|2 being positive can be associated

with the squared norm, so that ‖ψ‖ = (ψ,ψ)1/2. Now the closure of the space L with respect
to this norm gives us the desired Hilbert space H. (The sesquilinear functional (22) should be
extended from the lineal L to the whole space H by continuity.)

For multiple zeros of the function �(E) a complete set in L2(−π, π) can also be found
but now together with the eigenfunctions one has to find their associated functions. For
every eigenfunction ψ(x,Em) corresponding to a simple eigenvalue Em with pm being the
order of the zero Em of the function �(E) the chain of associated functions is defined as
[4, 5]: [∂nψ(x,E)/∂En]E=Em

, n = 1, . . . , pm − 1. The eigenfunctions together with the set
of corresponding associated functions form for the given value of the energy a root subspace.
The completeness condition of the set of eigenfunctions enlarged by corresponding associated
functions was first studied by Keldysh [7, 4]. It is clear that in every pm-dimensional root
subspace one can choose a basis ξmn

such that
(
ξmn

, ξmn′
) = δmn,mn′ and the complete set

of eigenfunctions and associated functions may be transformed into a set orthonormal with
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respect to the inner product (·, ·). Since our construction of the Hilbert space H is based on
the orthonormality of the basis set {ψn} with respect to this inner product, it is valid for the set
{ξmn

} also.
4. The properties of PT -symmetric diagonalizable Hamiltonians with unbroken PT

symmetry, a real spectrum and the eigenfunctions normalized according to (18), permit us to
state that

(a) the CPT -inner product defined in [2] coincides with the inner product (·, ·) introduced
above. This follows from the fact that they apparently coincide on solutions of
the boundary value problem (1)–(2) which form a basis in L2(−π, π) and both are
sesquilinear. We infer, hence, that any such Hamiltonian has positive CPT -normalizable
eigenfunctions;

(b) CPT completeness condition (see [2]) is equivalent to the usual completeness condition
for a non-selfadjoint Hamiltonian in the space L2(−π, π) given by (21);

(c) CPT extension of quantum mechanics for such Hamiltonians should follow the same
lines already reported in [2] but as long as the situation with the continuous spectrum is
unclear this extension is incomplete.

We hope that similar extension is possible for Hamiltonians with continuous spectrum
also. This optimism is based on the fact that for this case a counterpart of the Parceval equality
also exists [8] but the lack of a counterpart of the Riesz basis does not permit us to form a
definite conclusion.

For non-diagonalizable Hamiltonians with a simple spectrum, the situation is such that for
a given non-degenerate value of the energy there exist at least two different functions, one is
eigenfunction while the other is its associated function. As our example shows, in this case it is
still possible to construct a complete set orthonormal with respect to an appropriately defined
inner product but the functions belonging to the same root subspace are not eigenfunctions of
the Hamiltonian anymore. Moreover, if the basis functions have a definite PT parity the CPT
inner product should coincide with the inner product (·, ·) and, hence, the basis is positive
CPT normalizable. We leave open the question of whether the quantum mechanics may be
extended to this case.
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